Machine Learning and Data Mining

Support Vector Machines

Kalev Kask

Linear classifiers

- Which decision boundary is "better"?
- Both have zero training error (perfect training accuracy)
- But, one of them seems intuitively better...
- How can we quantify "better", and learn the "best" parameter settings?

Feature 1, x_{1}

Feature 1, x_{1}

Overview

- Separable data
- Linear (hard margin) SVM
- Hard margin
- Nearly separable data
- Linear (soft margin) SVM
- Soft margin
- Non-separable data
- Non-linear SVM
- Kernel SVM
- Hard/Soft margin

Math tech pt \#1

$0^{4,}$

$$
\begin{aligned}
& \theta \cdot \underline{\mathbf{x}}^{+\mathbf{T}} \geq 0 \\
& \theta \cdot \underline{\mathbf{x}}^{\mathbf{T}}=\mathrm{C} \\
& \downarrow \\
& \boldsymbol{\theta} \cdot \underline{\mathbf{x}}^{\mathbf{+}}=1
\end{aligned}
$$

Math tech pt \#2

Notation change!
 $\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots$
 \Downarrow
 $b+w_{1} x_{1}+w_{2} x_{2}+\ldots$

- Vector $\underline{w}=\left[w_{1} w_{2} \ldots\right]$ is perpendicular to the boundaries (why?)
- $w x+b=0$ \& $w x^{\prime}+b=0$ => $w\left(x^{\prime}-x\right)=0$: orthogonal

$$
\mathbf{U} \cdot \mathbf{V}=|\mathbf{U}| \cdot|\mathbf{V}| \cdot \cos (\mathbf{a})
$$

Separable SVM

- Maybe we want to maximize our "margin"
- To optimize, relate to model parameters
- Remove "scale invariance"
- Define class +1 in some region, class -1 in another
- Make those regions as far apart as possible

$$
\mathrm{f}(\mathrm{x})=0 \quad \mathrm{f}(\mathrm{x})=+1
$$

$$
\text { Region }+1
$$

Notation change!

```
00}+\mp@subsup{0}{1}{}\mp@subsup{x}{1}{}+\mp@subsup{0}{2}{}\mp@subsup{x}{2}{}+
    \Downarrow
    b+\mp@subsup{w}{1}{}\mp@subsup{x}{1}{}+\mp@subsup{w}{2}{}\mp@subsup{x}{2}{}+\ldots
```

Region-1
$f(x)=-1$

We could define such a function:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{w}^{*} \mathrm{x}^{\prime}+\mathrm{b} \\
& \mathrm{f}(\mathrm{x})>+1 \text { in region }+1 \\
& \mathrm{f}(\mathrm{x})<-1 \text { in region }-1 \\
& \text { Passes through zero in center... }
\end{aligned}
$$

"Support vectors" - data points on margin

Computing the margin width

- Vector $\underline{w}=\left[w_{1} w_{2} \ldots\right]$ is perpendicular to the boundaries
- Choose \underline{x}^{-}st $f\left(\underline{x}^{-}\right)=-1$; let \underline{x}^{+}be the closest point with $f\left(\underline{x}^{+}\right)=+1$

$$
\begin{equation*}
-\underline{x}^{+}=\underline{x}^{-}+\mathrm{r}^{*} \underline{w} \tag{why?}
\end{equation*}
$$

- Closest two points on the margin also satisfy

$$
\mathbf{w} \cdot \mathbf{x}^{-}+\mathbf{b}=-1 \quad \mathbf{w} \cdot \mathbf{x}^{+}+\mathbf{b}=+1
$$

Computing the margin width

- Vector $\underline{w}=\left[w_{1} w_{2} \ldots\right]$ is perpendicular to the boundaries
- Choose \underline{x}^{-}st $f\left(\underline{x}^{-}\right)=-1$; let \underline{x}^{+}be the closest point with $f\left(\underline{x}^{+}\right)=+1$
$-\underline{x}^{+}=\underline{x}^{-}+r^{*} \underline{w}$
- Closest two points on the margin also satisfy

$$
w \cdot x^{-}+b=-1 \quad w \cdot x^{+}+b=+1
$$

$$
\begin{aligned}
& w \cdot\left(x^{-}+r w\right)+b=+1 \\
\Rightarrow & r\|w\|^{2}+w \cdot x^{-}+b=+1 \\
\Rightarrow & r\|w\|^{2}-1=+1 \\
\Rightarrow & r=\frac{2}{\|w\|^{2}} \\
& M=\left\|x^{+}-x^{-}\right\|=\|r w\| \\
& =\frac{2}{\|w\|^{2}}\|w\|=\frac{2}{\sqrt{w^{T} w}}
\end{aligned}
$$

Maximum margin classifier

- Constrained optimization
- Get all data points correct
- Maximize the margin

This is an example of a quadratic program: quadratic cost function, linear constraints

$$
w^{*}=\arg \max _{w} \frac{2}{\sqrt{w^{T} w}}
$$

such that "all data on the correct side of the margin"

Primal problem:

$$
w^{*}=\arg \min _{w} \sum_{j} w_{j}^{2}
$$

s.t.

$$
\begin{aligned}
& y^{(i)}=+1 \Rightarrow w \cdot x^{(i)}+b \geq+1 \\
& y^{(i)}=-1 \Rightarrow w \cdot x^{(i)}+b \leq-1
\end{aligned}
$$

(m constraints)

Maximum margin classifier

- Constrained optimization
- Get all data points correct
- Maximize the margin

This is an example of a quadratic program: quadratic cost function, linear constraints

$$
w^{*}=\arg \max _{w} \frac{2}{\sqrt{w^{T} w}}
$$

such that "all data on the correct side of the margin"

Primal problem:

$$
w^{*}=\arg \min _{w} \sum_{j} w_{j}^{2}
$$

$$
y^{(i)}\left(w \cdot x^{(i)}+b\right) \geq+1
$$

A 1D Example

- Suppose we have three data points

$$
\begin{aligned}
& x=-3, y=-1 \\
& x=-1, y=-1 \\
& x=2, y=1
\end{aligned}
$$

- Many separating perceptrons, T[ax+b]
- Anything with $\mathrm{ax}+\mathrm{b}=0$ between -1 and 2
- We can write the margin constraints

$$
\begin{array}{ll}
a(-3)+b<-1 & =>b<3 a-1 \\
a(-1)+b<-1 & \Rightarrow>b<a-1 \\
a(2)+b>+1 & =>b>-2 a+1
\end{array}
$$

A 1D Example

- Suppose we have three data points

$$
\begin{aligned}
& x=-3, y=-1 \\
& x=-1, y=-1 \\
& x=2, y=1
\end{aligned}
$$

- Many separating perceptrons, T[ax+b]
- Anything with $\mathrm{ax}+\mathrm{b}=0$ between -1 and 2
- We can write the margin constraints

$$
\begin{array}{ll}
a(-3)+b<-1 & =>b<3 a-1 \\
a(-1)+b<-1 & \Rightarrow>b<a-1 \\
a(2)+b>+1 & =>b>-2 a+1
\end{array}
$$

- $E x: a=1, b=0$

A 1D Example

- Suppose we have three data points

$$
\begin{aligned}
& x=-3, y=-1 \\
& x=-1, y=-1 \\
& x=2, y=1
\end{aligned}
$$

- Many separating perceptrons, T[ax+b]
- Anything with $\mathrm{ax}+\mathrm{b}=0$ between -1 and 2
- We can write the margin constraints

$$
\begin{array}{ll}
a(-3)+b<-1 & =>b<3 a-1 \\
a(-1)+b<-1 & \Rightarrow>b<a-1 \\
a(2)+b>+1 & =>b>-2 a+1
\end{array}
$$

- $E x: a=1, b=0$
- Minimize ||a|| => a = .66, b = -. 33
- Two data on the margin; constraints "tight"

Machine Learning and Data Mining

Support Vector Machines: Lagrangian and Dual

Kalev Kask

Lagrangian optimization

Want to optimize constrained system:
$w^{*}=\arg \min _{w, b} \sum_{\boldsymbol{\rho}_{\mathrm{f}(\Theta)}} w_{j}^{2}$
s.t.

- Introduce Lagrange multipliers α (one per constraint)

$$
\theta^{*}=\arg \min _{\theta} \max _{\alpha \geq 0} f(\theta)+\sum_{i} \alpha_{i} g_{i}(\theta)
$$

- Can optimize θ, α_{i} jointly, with a simple constraint set
- Then:

$$
\begin{array}{ll}
g_{i}(\theta) \leq 0: & \alpha_{i}=0 \\
g_{i}(\theta)>0: & \alpha_{i} \rightarrow+\infty
\end{array}
$$

- Any optimum of the original problem is a saddle point of the new problem
- KKT complementary slackness:

$$
\alpha_{i}>0 \Rightarrow g_{i}(\theta)=0
$$

Optimization

- Use Lagrange multipliers
- Enforce inequality constraints

$$
\begin{array}{r}
w^{*}=\arg \min _{w} \max _{\alpha \geq 0} \frac{1}{2} \sum_{j} w_{j}^{2}+\sum_{i} \alpha_{i}\left(1-y^{(i)}\left(w \cdot x^{(i)}+b\right)\right) \\
\boldsymbol{\nabla}_{\mathbf{w}} \mathbf{L}=\mathbf{w}-\sum \boldsymbol{\alpha}_{\mathbf{i}} \mathbf{y}^{(\mathbf{j})} \mathbf{x}^{(\mathbf{i})} \quad \boldsymbol{\partial} \mathbf{L} / \boldsymbol{\partial} \mathbf{b}=-\sum \boldsymbol{\alpha}_{\mathbf{i}} \mathbf{y}^{(\mathbf{j})}
\end{array}
$$

Stationary conditions wrt w:

$$
w^{*}=\sum_{i} \alpha_{i} y^{(i)} x^{(i)}
$$

and since any support vector has $y=w x+b$,

$$
b=\frac{1}{N s v} \sum_{i \in S V}\left(y^{(i)}-w \cdot x^{(i)}\right)
$$

Dual form

- Use Lagrange multipliers
- Enforce inequality constraints
- Use solution w* to write solely in terms of alphas:

$$
\max _{\alpha \geq 0} \sum_{i}\left[\alpha_{i}-\frac{1}{2} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)}\left(x^{(i)} \cdot x^{(j)}\right)\right]
$$

s.t. $\sum_{i} \alpha_{i} y^{(i)}=0 \quad$ (since derivative wrt $\mathrm{b}=0$)

Another quadratic program:
optimize m vars with $1+\mathrm{m}$ (simple) constraints cost function has m^{2} dot products

$$
\begin{aligned}
w^{*} & =\sum_{i} \alpha_{i} y^{(i)} x^{(i)} \\
b & =\frac{1}{N s v} \sum_{i \in S V}\left(y^{(i)}-w \cdot x^{(i)}\right)
\end{aligned}
$$

Nearly separable SVM

- What if the data are not linearly separable?
- Want a large "margin":

$$
\min _{w} \sum_{j} w_{j}^{2}
$$

Want low error:

$$
\min _{w} \sum_{i} J\left(y^{(i)}, w \cdot x^{(i)}+b\right)
$$

- "Soft margin" : introduce slack variables for violated constraints

$$
\begin{aligned}
& w^{*}=\arg \min _{w, \epsilon} \sum_{j} w_{j}^{2}+R \sum_{i} \epsilon^{(i)} \\
& \text { s.t. } \\
& y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq+1-\epsilon^{(i)} \quad\left(\text { violate margin by }{ }^{2}\right) \\
& \qquad \epsilon^{(i)} \geq 0
\end{aligned}
$$

Assigns "cost" R proportional to distance from margin Another quadratic program!

Soft margin SVM

- Large margin vs. Slack variables

$$
\begin{aligned}
& w^{*}=\arg \min _{w, \epsilon} \sum_{j} w_{j}^{2}+R \sum_{i} \epsilon^{(i)} \\
& \text { s.t. }
\end{aligned}
$$

$$
y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq+1-\epsilon^{(i)}
$$

- R large = hard margin

$$
\epsilon^{(i)} \geq 0
$$

- R smaller
- A few wrong predictions; boundary farther from rest

Maximum margin classifier

- Soft margin optimization:
- For any weights w, we can choose ε to satisfy constraints

$$
w^{*}=\arg \min _{w, \epsilon} \sum_{j} w_{j}^{2}+R \sum_{i} \epsilon^{(i)}
$$

$$
y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq+1-\epsilon^{(i)}
$$

- Write ε^{*} as a function of w (call this J) and optimize directly
- $J=$ distance from the "correct" place

$$
\begin{gathered}
J_{i}=\max \left[0,1-y^{(i)}\left(w \cdot x^{(i)}+b\right)\right] \\
w^{*}=\arg \min _{w} \frac{1}{R} \sum_{j} w_{j}^{2}+\sum_{i} J_{i}\left(y^{(i)}, w \cdot x^{(i)}+b\right) \\
(\mathrm{L} 2 \text { regularization on the weights) }
\end{gathered}
$$

Dual form

- Soft margin dual:

$$
\begin{array}{r}
\max _{0 \leq \alpha \leq R} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x_{i j} \\
\text { s.t. } \left.\sum_{i} \alpha_{i} y^{(i)}=x^{(j)}\right)
\end{array} \begin{gathered}
\mathrm{K}_{\mathrm{ij}} \text { measures "similarity" } \\
\text { of } \mathrm{x}_{\mathrm{i}} \text { and } \mathrm{x}_{\mathrm{j}} \text { (their dot product) }
\end{gathered} \quad \mathbb{K}=\text { Gram matrix }
$$

$f(x)=0$

Region - 1

Support vectors now data on or past margin...

Prediction:

$$
\begin{gathered}
\hat{y}=w^{*} \cdot x+b=\sum_{i} \alpha_{i} y^{(i} x^{(i)} \cdot x+b \\
w^{*}=\sum_{i} \alpha_{i} y^{(i)} x^{(i)}
\end{gathered}
$$

$$
b=\ldots \text { More complicated; can solve }
$$

$$
\text { e.g. using any } ® 2(0, R)
$$

Machine Learning and Data Mining

Support Vector Machines: The Kernel Trick

Kalev Kask

Linear SVMs

$$
\mathrm{f}(\mathrm{x})=0 \quad \mathrm{f}(\mathrm{x})=+1
$$

- So far, looked at linear SVMs:
- Expressible as linear weights "w"
- Linear decision boundary

Region-1

- Dual optimization for a linear SVM:
$\max _{0 \leq \alpha \leq R} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)}\left(x^{(i)} \cdot x^{(j)}\right) \quad$ s.t. $\sum_{i} \alpha_{i} y^{(i)}=0$
- Depend on pairwise dot products:
- Kij measures "similarity", e.g., 0 if orthogonal $K_{i j}=x^{(i)} \cdot x^{(j)}$

Adding features

- Linear classifier can't learn some functions

1D example:

Adding features

- Recall: feature function Phi(x)
- Predict using some transformation of original features

$$
\hat{y}(x)=\operatorname{sign}[w \cdot \Phi(x)+b]
$$

- Dual form of SVM optimization is:

$$
\max _{0 \leq \alpha \leq R} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \Phi\left(x^{(i)}\right) \Phi\left(x^{(j)}\right)^{T} \quad \text { s.t. } \quad \sum_{i} \alpha_{i} y^{(i)}=0
$$

- For example, quadratic (polynomial) features:

$$
\Phi(x)=\left(1 \sqrt{2} x_{1} \sqrt{2} x_{2} \cdots x_{1}^{2} x_{2}^{2} \cdots \sqrt{2} x_{1} x_{2} \sqrt{2} x_{1} x_{3} \cdots\right)
$$

- Ignore root-2 scaling for now...
- Expands "x" to length $O\left(n^{2}\right)$

Implicit features

- Need $\Phi\left(x^{(i)}\right) \Phi\left(x^{(j)}\right)^{T}$

$$
\begin{aligned}
& \Phi(x)=\left(\begin{array}{l}
1 \sqrt{2} x_{1} \sqrt{2} x_{2} \cdots x_{1}^{2} x_{2}^{2} \cdots \sqrt{2} x_{1} x_{2} \sqrt{2} x_{1} x_{3} \cdots
\end{array}\right) \\
& \Phi(a)=\left(\begin{array}{lllll}
1 & \sqrt{2} a_{1} \sqrt{2} a_{2} & \cdots & a_{1}^{2} a_{2}^{2} & \cdots \\
\sqrt{2} a_{1} a_{2} \sqrt{2} a_{1} a_{3} \cdots
\end{array}\right) \\
& \Phi(b)=\left(\begin{array}{llll}
1 & \sqrt{2} b_{1} & \sqrt{2} b_{2} & \cdots \\
b_{1}^{2} & b_{2}^{2} & \cdots & \sqrt{2} b_{1} b_{2} \sqrt{2} b_{1} b_{3} \cdots
\end{array}\right)
\end{aligned}
$$

$$
\Phi(a)^{T} \Phi(b)=1+\sum_{j} 2 a_{j} b_{j}+\sum_{j} a_{j}^{2} b_{j}^{2}+\sum_{j} \sum_{k>j} 2 a_{j} a_{k} b_{j} b_{k}+\ldots
$$

$$
=\left(1+\sum_{j} a_{j} b_{j}\right)^{2}
$$

$$
=K(a, b)
$$

Can evaluate dot product in only O(n) computations!

Mercer Kernels

- If $K\left(x, x^{\prime}\right)$ satisfies Mercer's condition:

$$
\int_{a} \int_{b} K(a, b) g(a) g(b) d a d b \geq 0
$$

For all datasets X :

$$
g^{T} \cdot K \cdot g \geq 0
$$

- Then, $K(a, b)=\Phi(a) \cdot \Phi(b)$ for some $\Phi(x)$
- Notably, Phi may be hard to calculate
- May even be infinite dimensional!
- Only matters that $K\left(x, x^{\prime}\right)$ is easy to compute:
- Computation always stays $\mathrm{O}\left(\mathrm{m}^{2}\right)$

Common kernel functions

- Some commonly used kernel functions \& their shape:
- Polynomial $K(a, b)=\left(1+\sum_{j} a_{j} b_{j}\right)^{d}$

Common kernel functions

- Some commonly used kernel functions \& their shape:
- Polynomial $K(a, b)=\left(1+\sum_{j} a_{j} b_{j}\right)^{d}$
- Radial Basis Functions

$$
K(a, b)=\exp \left(-(a-b)^{2} / 2 \sigma^{2}\right)
$$

Common kernel functions

- Some commonly used kernel functions \& their shape:
- Polynomial $K(a, b)=\left(1+\sum_{j} a_{j} b_{j}\right)^{d}$
- Radial Basis Functions

$$
K(a, b)=\exp \left(-(a-b)^{2} / 2 \sigma^{2}\right)
$$

- Saturating, sigmoid-like:

$$
K(a, b)=\tanh \left(c a^{T} b+h\right)
$$

Common kernel functions

- Some commonly used kernel functions \& their shape:
- Polynomial $K(a, b)=\left(1+\sum_{j} a_{j} b_{j}\right)^{d}$
- Radial Basis Functions

$$
K(a, b)=\exp \left(-(a-b)^{2} / 2 \sigma^{2}\right)
$$

- Saturating, sigmoid-like:

$$
K(a, b)=\tanh \left(c a^{T} b+h\right)
$$

- Many for special data types:
- String similarity for text, genetics

- In practice, may not even be Mercer kernels...

Kernel SVMs

- Linear SVMs
- Can represent classifier using $(w, b)=n+1$ parameters
- Or, represent using support vectors, $x^{(i)}$
- Kernelized?
- K(x, x^{\prime}) may correspond to high (infinite?) dimensional Phi(x)
- Typically more efficient to remember the SVs
- "Instance based" - save data, rather than parameters
- Contrast:
- Linear SVM: identify features with linear relationship to target
- Kernel SVM: identify similarity measure between data
(Sometimes one may be easier; sometimes the other!)

Kernel Least-squares Linear Regression

- Recall L2-regularized linear regression:

$$
\theta=y X\left(X^{T} X+\alpha I\right)^{-1}
$$

Rearranging,

$$
\begin{aligned}
& \Rightarrow \theta\left(X^{T} X+\alpha I\right)=y X \quad \alpha \theta=\left(y-\theta X^{T}\right) X \\
& \text { Define: }
\end{aligned}
$$

$$
r=\frac{1}{\alpha}\left(y-\theta X^{T}\right) \quad \longrightarrow \quad \underline{\theta}=r X
$$

$$
\alpha r=\underline{y}-\underline{\theta} \underline{X}^{T^{7}}=\underline{y}-r X X^{T}
$$

Gram matrix: m x m,

$$
K_{i j}=\left\langle x^{(i)}, x^{(j)}\right\rangle
$$

Rearrange \& solve for r :

$$
r=\left(X X^{T}+\alpha I\right)^{-1} y=(K+\alpha I)^{-1} y
$$

Linear prediction:

$$
\tilde{y}=\langle\theta, \tilde{x}\rangle=r X(\tilde{x})^{T}=\sum_{j} r_{j}\left\langle x^{(j)}, \tilde{x}\right\rangle=\sum_{j} r_{j} K\left(x^{(j)}, \tilde{x}\right)
$$

Now just replace $K\left(x, x^{\prime}\right)$ with your desired kernel function!

Example: Kernel Linear Regression

- K: MxM

$$
r=(K+\alpha I)^{-1} y \quad \tilde{y}=\sum_{j} r_{j} K\left(x^{(j)}, \tilde{x}\right)
$$

Linear kernel:
$K\left(x, x^{\prime}\right)=x^{T} \cdot x^{\prime}$

Gaussian (RBF) kernel:
$K\left(x, x^{\prime}\right)=\exp \left(-\gamma\left(x-x^{\prime}\right)^{2}\right)$

Summary

- Support vector machines
- "Large margin" for separable data
- Primal QP: maximize margin subject to linear constraints
- Lagrangian optimization simplifies constraints
- Dual QP: m variables; involves m^{2} dot product
- "Soft margin" for non-separable data
- Primal form: regularized hinge loss
- Dual form: m-dimensional QP
- Kernels
- Dual form involves only pairwise similarity
- Mercer kernels: dot products in implicit high-dimensional space

